CCA - COLORECTAL CANCER ACADEMY: COSTRUIRE IL SAPERE 2ª Edizione Rome, April 29th, 2022

L'importanza dei biomarcatori emergenti

Roberto Moretto

Polo Oncologico Azienda Ospedaliero-Universitaria Pisana Università di Pisa

Biomarkers in colorectal cancer

Tissue-based

- Microsatellite instability
- POLE mutation
- TMB
- RAS (KRAS-G12C) mutation
- BRAF (V600E) mutation
- HER2 iperexpression/amplification
- Gene fusions
- MGMT deficiency
- CMS
- Other gene alterations

Plasma-based

- CEA and CA19.9
- ctDNA
- Circulating Tumor Cells
- Exosoms
- Circulating RNA
- Proteins

Tissue biomarkes in colorectal cancer

	Alterations	Prevalence	Targetability evidence	Enrichment
5	<i>RAS</i> mutations	55-60%	NO	-
5	<i>KRAS</i> G12C mutation	3%	YES	-
	BRAF V600E mutation	8-10%	YES	(> if right colon <i>, RAS</i> wt, MSI)
	<i>PI3K</i> mutations	8%	Probably YES	-
	Microsatellite instability	5%	YES	(> if right colon, <i>BRAF</i> mut)
	<i>BRAF</i> non-V600E mutations	2%	NO	(> if left/rectum colon, <i>RAS</i> mut, MSS)
) HER2 amplification	2%	YES	(> if left/rectum colon, <i>RAS/BRAF w</i> t)
) MET amplification	2%	Case report	-
) POLE mutations	1%	YES	(> if right colon, MSS)
	<i>TRK1-3</i> , <i>ALK</i> , <i>ROS1</i> translocations	<1%	YES	(> if right colon <i>, RAS/BRAF</i> wt, MSI)
) RET translocations	<1%	Case report	(> if right colon, <i>RAS/BRAF</i> wt, MSI)
5) MGMT silencing	40%	YES	(> if right colon, <i>RAS</i> mut, MSS)

Anti-PD1 in MSI-H mCRC - Keynote-177 – Primary endpoint met: PFS superiority

André et al, N Eng J Med 2020 Diaz et al, Lancet Oncol 2022

Anti-PD1 in MSI-H mCRC - Keynote-177 – Primary endpoint was not met: OS superiority

Diaz et al, Lancet Oncol 2022

Primary resistance to pembrolizumab

André et al, N Eng J Med 2020

Combination strategies: Nivo + Ipi in first line

Combination strategies: Ongoing studies in first line

Duration of immunotherapy in chemorefractory MSI-H/dMMR mCRC

Immunoterapy with Nivo+Ipi until PD (median duration of therapy was 24.9 months) Median follow-up: 50.9 months Median PFS, mo NR survival^a (%) 95% CI 38.4-NE Progression-free 36-month rate (95% CI), % 48-month rate (95% CI), % 60 (50-68) 53 (43-62) Months No. at risk All patients 119 Median OS, mo NR 95% CI NE-NE % survival 36-month rate (95% CI), % 48-month rate (95% CI), % 71.4 (62.3-78.6) 70.5 (61.4-77.9) **Overall** Months No. at risk All patients 119

Andrè et al, WCGI 2021

Bringing immunotherapy to early stages colon cancer

Chalabi et al, Nat Med 2020

Preop anti-PD1 in MSI-high early colon cancer

Patient	Pathologica	l response	Radiographic response					
	Primary tumour	Lymph Nodes	Extraluminal mucin after treatment	Progressive homogeneity of mucin after treatment	RECIST 1.1			
1	Near -complete	0 of 81	Yes	Yes	Stable			
2	Complete	0 of 43	Yes	Yes	Partial response			
3	Complete	0 of 18	Yes	Yes	Partial response			
4	Complete	0 of 22	Yes	Yes	Partial response			
5	Complete	0 of 59	No	No	Partial response			
6	Complete	1 of 91	Yes	Yes	Partial response			
7	Complete	0 of 19	_*	Yes	Stable			
8	Complete	0 of 21	Yes	Yes	Stable			
9	Complete	0 of 11	Yes	n.a.	Stable			

Kothari et al, Br J Surg 2022

Bringing immunotherapy to early stages rectal cancer

Phase II, single arm study in dMMR/MSI-H LARC treated with neoadj dostarlimab for 6 months Co-primary endpoints:

- ORR
- cCR or pCR with or without CTRT at 12 months

Figure 1. Endoscopic response from time of treatment initiation (n=13). Thirteen of 16 patients underwent minimum of two endoscopic assessments. Eleven (11) patients completed 6 months of dostarlimab and 100% (11/11) achieved endoscopic CR without chemoRT or surgery. Patient 13 achieved endoscopic CR prior to completing treatment.

Figure 2. Radiographic response from time of treatment initiation (n=13). Thirteen of 16 patients underwent minimum of one radiographic assessment. Eleven (11) patients completed the full 6 months of dostarlimab and 100% (11/11) achieved radiographic CR. Patient 13 achieved radiographic CR prior to completing treatment.

Ultramutated mCRC: *POLE* mutations

Nivolumab

Outcome	POLE-pp N=5	POLE-pd/VUS N=15*	HR (Cl95%)
ORR at 12W	0%	50% (7/14)	-
DCR at 12W	0%	79% (11/14)	-
mPFS	2.3 months	9.6 months 16.5/7.6	0.2 (0.1-0.7)
mOS	4.7 months	Not reached NR/9.8	0.1 (0.02-0.7)

Anti-BRAFV600E + anti-EGFR +/- anti-MEK in advanced mCRC: BEACON trial

Anti-BRAFV600E + anti-EGFR + anti-PD-1 in refractory BRAF mut mCRC

Anti-BRAFV600E + anti-EGFR +/- chemotherapy in first-line *BRAF* mut mCRC: BREAKWATER trial - safety lead-In results

Kopetz et al, ASCO-GI 2022

Algorithm for *BRAFV600E* mut mCRC

* Consider reintroduction after PD in the case of very good duration of response (PFS > 12 mos);
**based on previous treatments and their outcome

Upfront chemo-intensity for *BRAFV600E* mut Progression-free Survival – Subgroup analysis

	Doublet	ts/bev	FOLFO	XI RI/bev					
Subgroup	Events/	N (%)	Event	s/N (%)	HR (95% CI)		L		P Value
ntention to treat population ECOG PS	761/851	(89.4)	728/846	(86.1)	0.74 (0.67, 0.82)		HE		0.705
0	584/656	(89.0)	571/667	(85.6)	0.75 (0.67, 0.84)		┝═╌┤		
1-2	175/192	(91.1)	153/175	(87.4)	0.79 (0.63, 0.99)		┝━━━┥		
Age							. 1		0.585
<70 years	645/722	(89.3)	605/707	(85.6)	0.74 (0.66, 0.83)		┝╋┥│		
>70 years	116/129	(89.9)	123/139	(88.5)	0.73 (0.57, 0.95)		┝┷╍┷┥│		
Gender									0.945
Male	470/518	(90.7)	424/489	(86.7)	0.75 (0.66, 0.85)		┝╼╌┤│		
Female	291/333	(87.4)	304/357	(85.2)	0.74 (0.63, 0.87)		┝╼┻╌┥│		
_iver only									0.681
No	538/596	(90.3)	475/543	(87.5)	0.74 (0.65, 0.84)		╞╼┤		
Yes	223/254	(87.8)	252/300	(84.0)	0.77 (0.64, 0.92)		┝╼╾┤│		
Time to metastases									0.242
Metachronous	107/130	(82.3)	102/130	(78.5)	0.85 (0.64, 1.12)		┝─────┤┤		
Synchronous	653/720	(90.7)	626/716	(87.4)	0.72 (0.64, 0.80)		┝╋┤│		
Previous adjuvant									0.165
No	707/790	(89.5)	674/782	(86.2)	0.73 (0.65, 0.81)		⊢∎-i		
Yes	54/61	(88.5)	54/63	(85.7)	0.99 (0.67, 1.47)			-1	
Primary resection									0.898
No	356/386	(92.2)	351/400	(87.8)	0.73 (0.63, 0.85)		┝╼╌┤│		
Yes	405/465	(87.1)	377/445	(84.7)	0.75 (0.65, 0.86)		┝╼╌┥│		
Tumor site									0.265
Right	227/255	(89.0)	248/295	(84.1)	0.70 (0.58, 0.84)		┝╼╾┥╷│		
Left / rectum	479/535	(89.5)	442/496	(89.1)	0.78 (0.69, 0.89)				
RAS and BRAF status									0.567
RAS – BRAF wt	153/172	(89.0)	151/177	(85.3)	0.77 (0.61, 0.96)				
RAS mut	389/430	(90.5)	371/422	(87.9)	0.73 (0.64, 0.85)		╷┝╼┥╷		
BRAF mut	48/54	(88.9)	57/61	(93.4)	0.84 (0.56, 1.25)				
Site - RAS/BRAF									0.552
Right - RAS/BRAF wt	28/31	(90.3)	35/44	(79.5)	0.52 (0.30, 0.89)		I		
Right - RAS mut	133/149	(89.3)	143/168	(85.1)	0.73 (0.57, 0.93)				
	36/40	(90.0)	37/39	(94.9)	0.82 (0.50, 1.33)			I	
Left DAS mut	118/134	(88.1)	116/132	(87.9)	0.85 (0.66, 1.10)				
	249/2/3	(91.2)	224/200	(00.0)				-	
Leit - DKAF IIIut	11/13	(84.6)	20/22	(90.9)	1.36 (0.62, 2.99)				
								1 5 0	
						0.25	0.5 1	1.5 2	3

Upfront chemo-intensity for *BRAFV600E* mut based on PTL: Validation in a real-life setting – BRAF BeCool

295 BRAF mut mCRC pts < 70 ys or 71-75 and ECOG PS 0

Moretto et al., Br J Cancer, under publication

Upfront chemo-intensity for *BRAFV600E* mut based on PTL: Validation in a real-life setting – BRAF BeCool

Anti-HER2 treatments: consistent efficacy results

	HERACLES- A ¹ n=27	MyPathway² n=43*	TRIUMPH ³ n=27/25 tissue/ctDNA	TAPUR⁴ n=28	MOUNTAINEER⁵ n=26	DESTINY- CRC01 ⁶ n=53**	Tsurutani ⁷ N=20	HERACLES -B ⁸ n=30***	Yuan ⁹ n=11	Meric- Bernstam ¹⁰ n=13
Regimen	Trastuzumab + Lapatinib	Trastuzumab + Pertuzumab	Trastuzumab + Pertuzumab	Trastuzumab + Pertuzumab	Trastuzumab + Tucatinib	Trastuzumab- deruxtecan	Trastuzumab -deruxtecan	T-DM1 + Pertuzumab	Trastuzumab + Pyrotinib	Zanidatamab
Response rate	30%	40%	30%/28%	25%	52%	45%	15%	10%	27%	31%
Median PFS, mos	4.8	5.3	4.0/3.1	4.0	8.1	6.9	4.1	4.8	NA	NA
Median OS, mos	10.6	14.0	10.1/8.8	25.0	18.7	15.5	NA	NA	NA	NA
Most common AEs	Fatigue (15% G3) Rash (4%G3; 44% G1/2) Diarrhea (78% G1/2)	Diar Nai	rhea (4% G3; 30% (usea (2% G3; 28% (G1/2) G1/2	Diarrhea (4% G3) Hypertension (4% G3)	Nausea (5 Anemia (10- Neutropenia Thrombocytopeni Diarrhea (2% G3 ILD (6% G2-5)	% G3/4) 15% G3/4) (26% G3/4) ia (10% G3/G4) 8/4; 25% G1/2) 2 fatal cases	Thrombocyto penia (7% G3)	diarrhea (73% G3)	diarrhea (49% G1/2) infusion related reaction (34% G1/2)

1. Sartore-Bianchi et al. Lancet Oncol 2016; 2. Meric-Bernstamet et al. Lancet Oncol 2019

**KRAS* wt subgroup

** 30% prior anti-HER2 therapy

*** Did not met primary endpoint

3. Nakamura et al. Nature Med 2021; 4. Gupta et al. ASCO-GI Congress 2020

5. Strickler et al. ESMO Congress 2019; 6. Siena et al. Lancet Oncol 2021

7. Tsurutani J, et al. Cancer Disc 2020; 8. Sartore-Bianchi et al. ESMO Open 2020; 9. Yuan

et al. ASCO-GI Congress 2021; 10. Meric-Bernstm et al. ESMO Congress 2019;

Efficacy of anti-HER2 therapy in (K)RAS mut tumours

Yaeger et al. Cancer Cell 2018 ; Meric-Bernstamet et al, Lancet Oncology 2019; Siena et al. ESMO Congress 2021

anti-HER2 strategies in HER2+ mCRC: ongoing trials

	Study	Phase	N pts	Drugs	Primary endpoint	Country
	HERACLES RESCUE	II	13	T-DM1	ORR	
Μ	MOUNTAINEER	IOUNTAINEER II 115 Tucatinib + Tr		Tucatinib vs Tucatinib + Trastuzumab	ORR	
	NCT04430738	I/II	65	Tucatinib + Trastuzumab + FOLFOX/CAPOX	Safety/ORR	
	NCT04380012	II	40	Pyrotinib + Trastuzumab	ORR	*
	MODUL - maintenance	II	-	Trastuzumab + Pertuzumab + Capecitabine	PFS	
	NSABP FC-11	II	35	Neratinib + Trastuzumab vs Neratinib + Cetuximab	ORR	
	DESTINY-CRC02	II	120 (including <i>RAS</i> mut)	T-DXd 5.4 mg/kg vs 6.4 mg/kg	ORR	
	SWOG \$1613	Ш	130	Trastuzumab + Pertuzumab vs Cetuximab + Irinotecan	PFS	

http://clinicaltrials.gov

KRAS G12C inhibitor +/- anti-EGFR: preclinical data Similarity between BRAF V600E and KRAS G12C

Amodio et al. Cancer Discovery 2020

Anti KRAS G12C in chemorefractory mCRC

	CodeBreak100 ¹ n=62	CodeBreak101 ² n=31	KRISTAL-1 ³ n=46	KRISTAL-1 ³ n=28
Regimen	Sotorasib	Sotorasib + Panitumumab	Adagrasib	Adagrasib + Cetuximab
Response rate	10%	27%	22%	43%
Disease control rate	82%	81%	87%	100%
Median PFS, mos	4.0	NA	5.6	NA
Median OS, mos	10.6	NA	NA	NA
Most common AEs	Fatigue (9% G1/2) Nausea/Vomiting (5% G1/2) Anemia (5% allG; 2%G3) Diarrhea (18% allG; 2% G3)	Rash acn. (59% allG; 6% G3) Nausea (26% G1/2) Diarrhea (23% allG; 3% G3) HypoK/Mg (16 allG; 3% G3)	Diarrhea (63% allG; G3/4 7%) Nausea (57% G1/2) Fatigue (46% allG; G3/4 4%) Vomiting (46% G1/2) Decreased appetite (15% G1/2) Peripheral edema (15% G1/2) AST/ALT incr. (13% allG; G3/4 4%) QT prolong. (13% allG; G1/2 2%) Anemia (11% allG; 2% G3/4)	Nausea (63% G/2) Diarrhea (56% allG; G3/4 3%) Vomiting (50% G1/2) Fatigue (47% G1/2) Rash acn (44% allG; 3% G3/4) Infusion react.(19% allG; G3/4 3%) Peripheral edema (19% G/2) Stomatitis (19% allG; 3% G3/4) QT prolong. (16% allG; 3% G3/4) ALT incr. (13% G1/2)

1.Fakih et al., Lancet Oncol 2021 2. Fakih et al., ESMO Congress 2021 3. Weiss et al., ESMO Congress 2021

anti-KRASC12C strategies in advanced mCRC: ongoing phase III trials

Outcome Measures

Primary: PFS, OS **Secondary:** Safety, ORR (RECIST 1.1), 1-year OS, DOR, PK, PROs

KRYSTAL-10, NCT04793958 CodeBreak-300, NCT05198934

Gene fusions as a target: entrectinib and larotrectinib

Algorithm for NTRK gene fusion testing

Negative ultra-selection for anti-EGFR-based therapy: PRESSING-2 study

among 650 samples profiled by means of FoundationOne[®] CDx, 162 were RAS/BRAF wt, MSS, PRESSING panel neg. and treated with an anti-EGFR-based treatment

PRESSING-2 pos.=24 (15%) [numerically enriched in right-sided]

Randon et al, JCO Precision Oncol, under publication

Negative ultra-selection for anti-EGFR-based therapy: PRESSING-2 study

Secondary resistance to TMZ may induce a hypermutated status (TMZ mutational signature #8 characterized by T>C transitions), frequently coupled by acquired mutations in MMR genes in diverse tumor types, including GBM, CRC and NECs

The induction of hypermutation (TMB-high) by a TMZ priming phase provided the rationale for immune-sensitization of MSS mCRCs

Pietrantonio et al. Cancer Treat Rev 2020; Alexandrov et al, Nature 2013; Germano G et al, Nature 2017; Campbell et al, Cell 2017; Klempner et al, JCO PO 2020

MAYA trial

Primary endpoint: 8-month PFS rate in patients entered the Second Treatment Phase.

According to Fleming single-stage design, p0 (8-months PFS rate in the null hypothesis) = 5%, and p1 (8-months PFS rate in the alternative hypothesis) = 20%, a total of **27 patients** were required. Null hypothesis was rejected if at least **4 patients** were progression-free at the 8-month timepoint

MAYA trial: results in whole treatment strategy

⁵ Morano et al. JCO 2022

MAYA trial: results in the second treatment part

Biomarkers in colorectal cancer

Tissue-based

- Microsatellite instability
- POLE mutation
- TMB
- RAS (KRAS-G12C) mutation
- BRAF (V600E) mutation
- HER2 iperexpression/amplification
- Gene fusions
- MGMT deficiency
- CMS
- Other gene alterations

Plasma-based

- CEA and CA19.9
- ctDNA
- Circulationg Tumor Cells
- Exosome
- Circulating RNA
- Protein

among 733 patients with baseline CEA ≥10 ng/ml enrolled in TRIBE e TRIBE2 studies,

434 have at least one paired CEA and radiological assessment during maintenance or treatment break

Paired evaluable CEA and radiological assessment

N=1178

Progression disease by CEA	Change in CEA from nadir	AUC (95% CI)	Sensitivity, n (%, 95% Cl)	Specificity <i>n</i> (%, 95% CI)	Negative predictive value, <i>n</i> (%, 95% Cl)	Positive predictive value, <i>n</i> (%, 95% CI)	CT scan avoided, n (%)	Radiological PD and no CEA increase among cases with no CEA increase, n (%)	Radiological PD and no CEA increase among all radiological PDs, <i>n</i> (%)
Cut-off by optimal AUC	≥120%	0.81 (0.79–0.83)	187/254 (74%, 68–79)	723/924 (78%, 75–81)	723/790 (92%, 90–93)	187/388 (48%, 45–52)	790/1178 (67%)	67/790 (8%)	67/254 (26%)
Cut-off by maximum sensibility	Any increase	0.64 (0.61–0.67)	235/254 (93%, <mark>89–95)</mark>	327/924 (35%, 32–39)	327/346 (95%, <mark>92–96)</mark>	235/832 (28%, 27–29)	346/1178 (29%)	19/346 (5%)	19/254 (7%)

- Cut-off ≥120% from nadir could be used during follow-up in most patients after the end of induction chemotherapy thus sparing a
 relevant amount of radiological assessments.
- Any increase of CEA from nadir as cut-off, increasing the sensitivity while reducing specificity, should be especially evaluated when missing PD may cause immediate deterioration of patients' conditions due to a high risk of disease-related symptoms (i.e. liver failure due to multiple liver metastases, intestinal occlusion due to peritoneal carcinomatosis, uncontrolled pain due to pelvic relapse).

ctDNA - potential clinical applications in CRC

What questions could liquid biopsies answer?

ctDNA - potential clinical applications in CRC

What questions could liquid biopsies answer?

ctDNA in early stages CRC

Recurrence Free Survival according to post-op ctDNA status

C Doctonorativo positivo ctDNA

Tie et al, JAMA Oncol 2019

Reinert et al, JAMA Oncol '19

Tarazona N et al. ASCO 2020

Where are we going? Perspective #1

Tie et al, JAMA Oncol 2019

CIRCULATE-Japan - GALAXY study - post-op ctDNA neg

Where are we going? Perspective #2

Clearance of post-surgery ctDNA with or without chemotherapy

Kotaka et al, ASCO GI 2022

ERASE-CRC - Part 1 - Adjuvant phase II study

ctDNA in early stages CRC

Recurrence Free Survival according to post-adjuvant ctDNA status

Tie et al, JAMA Oncol 2019

Reinert et al, JAMA Oncol '19

Tarazona N et al. ASCO 2020

Where are we going? Perspective #3

Stage III CRC (n=88) - Post-adjuvant tx ctDNA

ERASE-CRC - Part 2 - Post-Adjuvant phase II study

Ongoing studies assessing the role of MRD with ctDNA

Study	Phase	Assay	Population	N pts	Drugs	Primary endpoint	Country
COBRA	11/111	Lunar 1 Guardant Health	Colon STAGE II	1408	Exp: ctDNA pos.: FOLFOX/CAPOX; ctDNA neg.: obs Control: obs	ctDNA clearance (phase II) RFS (phase III)	
CIRCULATE	Ш	Gene panel (NGS)	Colon STAGE II	4812	ctDNA pos.: Exp: Cape or CAPOX (at investigator choice) Control: Obs ctDNA neg.: FU or off-study	DFS	
CIRCULATE	Ш	ddPCR	Colon STAGE II	554	ctDNA pos.: Exp: FOLFOX Control: Obs ctDNA neg.: FU or off-study	DFS in ctDNA pos.	
GALAXY, ALTAIR, VEGA	Ш	Signatera	CRC STAGE II-IV	VEGA 1240 ALTAIR 240	ctDNA neg (VEGA): Exp. Obs Control: CAPOX 3 months ctDNA pos, (ALTAIR) - CAPOX x3 months : Exp: FTD/TPI Control: obs	DFS	
BESPOKE	ll Case- control	Signatera	CRC STAGE II-III	1000	Tx or obs recommended based on ctDNA status (control arm as per clinical practice without ctDNA analysis)	Tx decision based on ctDNA status	
DYNAMIC II	ш	ddPCR	Colon STAGE II	450	Exp: ctDNA pos: adj 5FU/Cape +/- oxa ctDNA neg.: obs Comparator: at physician's discrection	N. Pts treated with Tx RFS	***
DYNAMIC III	11/111	ddPCR	Colon STAGE III	1000	Exp: ctDNA informed Tx (escalation or descalation) Control: Tx blinded on ctDNA status	RFS	***
PEGASUS	II	Lunar 1 Guardant Health	Colon STAGE III STAGE II HR	140	ctDNA pos. CAPOX (3 months)→ Cape (3 months) if ctDNA neg; FOLFIRI (6 months) if ctDNA pos ctDNA neg. Cape (6 months)→ FU if ctDNA neg; CAPOX (6 months) if ctDNA pos	ctDNA neg. rate	
TRACC	III non- inferiority	Signatera	Colon STAGE III STAGE II HR	1620	Exp: ctDNA informed Tx (escalation or descalation) Control: Tx blinded on ctDNA status	DFS	
NCT03803553	П	Lunar 1 Guardant Health	CRC STAGE III-IV	500	ctDNA post-adj pos.: Exp: FOLFIRI (Nivo is MSI-H; Enco+Bini+Cet if BRAFmut) Control: Obs ctDNA post-adj neg.: Obs	DFS ctDNA clearance	

Kasi et al, JCO Precision Oncol 2022

ctDNA - potential clinical applications in CRC

What questions could liquid biopsies answer?

Prospective evaluation of ctDNA for antiEGFR rechallenge: the CHRONOS trial

8*

9

2

17

8

27

Total

30%

33%

7%

63%

30%

100%

Partial Response

Stable Disease >4 mos

Stable Disease <4 mos

* Two PR were unconfirmed

Control of disease

(PR+SD>4 mos) Progressive Disease

Sartore-Bianchi et al, ASCO 2021

Ongoing study: the PARERE trial

• ECOG PS: 0 vs 1

Target accrual: 214 pts

Ongoing study in *PI3K* mut and *RAS/BRAF* wt pts on ctDNA: the C-PRECISE-01trial

C-PRECISE-01 is an open-label, multicentre, phase lb/II study of MEN1611, a PI3K Inhibitor, and cetuximab in patients with PIK3CA mutated, N-K-RAS and BRAF wild-type metastatic colorectal cancer (mCRC) failing irinotecan, oxaliplatin, 5-FU and anti-EGFR containing regimens.

MEN1611 + Cetuximab

BID = twice daily, RP2D = recommended Phase 2 dose

Primary endpoints:

• STEP 1: To determine MEN1611 RP2D in combination with cetuximab (DLT incidence ≤1 out of 6 patients treated)

STEP 2: To assess antitumor activity

- ORR according to RECIST 1.1

Secondary endpoints:

- Safety and tolerability of the combination
- Phamacokinetics profile of MEN1611
- * DCR, DoR, PFS and OS

Take home messages

✓ Several tissue biomerkers were routinarely assessed in clinical practice for their prognostic and predictive value (Microsatellite instability, *RAS* and *BRAF* mutations, NTRK fusions)

✓Other biomarkers may soon enter clinical practice for their predictive value of response to target therapy (HER-2 overexpression/amplification, KRAS-G12C, POLE mutation, MGMT silencing)

✓However, prevalence of therapeutically actionable alterations is low and fragmentation of mCRC in multiple molecular entities will imply a paradigm shift in the analysis of alterations from "single gene analysis" to "multigene panel analysis".

 Liquid biopsy is a potential source of clinically relevant information that could drive clinicians' decision making in different settings of CRC patients' care.

✓However, the clinical reliability of a liquid biopsy-based therapeutic approach should be challenged in properly designed trials.